

Amendments for The Book of Numbers

Page 19

~~LXXXIV~~ - DCCLIII = ~~LXXIX~~CCCLI

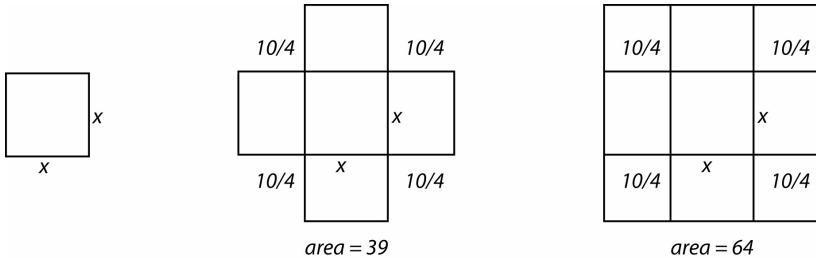
Page 48

Don't believe Euclid? Well, let's try it with 72. You can make 72 by multiplying 18 and 4. You can make 18 by multiplying 9 and 2, 9 by multiplying 3 and 3, and you can make 4 by multiplying 2 and 2. So the smallest factors of 72 are $2 \times 2 \times 3 \times 3$. And, you guessed it, 2 and 3 are prime numbers. According to Euclid, this will work for any natural number.

Page 50

These are big numbers designed to take years for our best computers to figure out as factors.

Page 67



Page 81

$$\frac{Pl^2}{l^2} = \frac{0.3873^3}{1^3}$$

Page 119

2, 2.25, 2.37, 2.44, 2.488, 2.52...

Page 124

Or if you were driving and moving along at e^x then your speed would be e^x and your acceleration would be e^x .

Page 182

$$1x^4 + 4x^3 \times 4 + 6x^2 \times 4^2 + 4x^1 \times 4^3 + 1 \times 4^4$$

Page 240

This means that given a polynomial equation (something like this: $3x^2 + 1 = 0$), there is a solution in the same field of numbers used for its coefficients.

...If you recall, the degree of a polynomial equation means the highest power the x variable is raised to (an equation containing x^2 has degree 2, or containing x^3 has degree 3, or containing x^n has degree n). Gauss's proof showed that every polynomial equation over the field of complex numbers of degree n (where n is higher than 1) has n complex solutions.

Page 245

$$10 \times 10 + 1 = 101$$

Page 250

Using the value of π for θ , we obtain an extraordinary result: